Math Problem Statement

Double integral of first limit 0to1 and second limit of 2 to 1 x(x+y)dxdy

Solution

To evaluate the double integral

0121x(x+y)dxdy,\int_{0}^{1} \int_{2}^{1} x(x + y) \, dx \, dy,

let’s break it down step by step:

Step 1: Analyze the limits

The inner integral has limits from 22 to 11 for xx, which are reversed, indicating that the direction of integration is from x=2x = 2 to x=1x = 1. When this happens, the bounds can be swapped, and the integral will gain a negative sign.

Thus, the integral becomes: 0112x(x+y)dxdy.-\int_{0}^{1} \int_{1}^{2} x(x + y) \, dx \, dy.

Step 2: Evaluate the inner integral

The inner integral is: 12x(x+y)dx.\int_{1}^{2} x(x + y) \, dx.

Expand x(x+y)x(x + y): x(x+y)=x2+xy.x(x + y) = x^2 + xy.

The integral becomes: 12(x2+xy)dx=12x2dx+12xydx.\int_{1}^{2} (x^2 + xy) \, dx = \int_{1}^{2} x^2 \, dx + \int_{1}^{2} xy \, dx.

(a) Compute 12x2dx\int_{1}^{2} x^2 \, dx:

12x2dx=[x33]12=233133=8313=73.\int_{1}^{2} x^2 \, dx = \left[\frac{x^3}{3}\right]_{1}^{2} = \frac{2^3}{3} - \frac{1^3}{3} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}.

(b) Compute 12xydx\int_{1}^{2} xy \, dx:

Here, yy is treated as a constant. The integral is: 12xydx=y12xdx=y[x22]12.\int_{1}^{2} xy \, dx = y \int_{1}^{2} x \, dx = y \left[\frac{x^2}{2}\right]_{1}^{2}. [x22]12=222122=4212=32.\left[\frac{x^2}{2}\right]_{1}^{2} = \frac{2^2}{2} - \frac{1^2}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2}. Thus: 12xydx=y32.\int_{1}^{2} xy \, dx = y \cdot \frac{3}{2}.

Combine the results of (a) and (b): 12x(x+y)dx=73+3y2.\int_{1}^{2} x(x + y) \, dx = \frac{7}{3} + \frac{3y}{2}.

Step 3: Evaluate the outer integral

Now substitute the result of the inner integral into the outer integral: 01(73+3y2)dy.-\int_{0}^{1} \left(\frac{7}{3} + \frac{3y}{2}\right) \, dy.

Split into two separate integrals: 0173dy013y2dy.-\int_{0}^{1} \frac{7}{3} \, dy - \int_{0}^{1} \frac{3y}{2} \, dy.

(a) Compute 0173dy-\int_{0}^{1} \frac{7}{3} \, dy:

0173dy=73011dy=73[y]01=73(10)=73.-\int_{0}^{1} \frac{7}{3} \, dy = -\frac{7}{3} \int_{0}^{1} 1 \, dy = -\frac{7}{3} \cdot \left[y\right]_{0}^{1} = -\frac{7}{3} \cdot (1 - 0) = -\frac{7}{3}.

(b) Compute 013y2dy-\int_{0}^{1} \frac{3y}{2} \, dy:

013y2dy=3201ydy=32[y22]01.-\int_{0}^{1} \frac{3y}{2} \, dy = -\frac{3}{2} \int_{0}^{1} y \, dy = -\frac{3}{2} \cdot \left[\frac{y^2}{2}\right]_{0}^{1}. [y22]01=122022=12.\left[\frac{y^2}{2}\right]_{0}^{1} = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2}. Thus: 013y2dy=3212=34.-\int_{0}^{1} \frac{3y}{2} \, dy = -\frac{3}{2} \cdot \frac{1}{2} = -\frac{3}{4}.

Step 4: Combine the results

01(73+3y2)dy=7334.-\int_{0}^{1} \left(\frac{7}{3} + \frac{3y}{2}\right) \, dy = -\frac{7}{3} - \frac{3}{4}.

Find a common denominator (1212): 73=2812,34=912.-\frac{7}{3} = -\frac{28}{12}, \quad -\frac{3}{4} = -\frac{9}{12}.

Combine: 2812912=3712.-\frac{28}{12} - \frac{9}{12} = -\frac{37}{12}.

Final Answer:

3712\boxed{-\frac{37}{12}}


Would you like further details or have any questions? Here are related topics to explore:

  1. How do you determine if integration limits are reversed?
  2. What are strategies for solving double integrals with variable limits?
  3. How do constants affect integrals in nested integrations?
  4. What is the geometric interpretation of a double integral?
  5. How does reversing the order of integration affect the result?

Tip: Always check if the limits of integration are in the correct order; reversing them changes the sign of the integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double Integrals
Reversing Limits of Integration
Definite Integration

Formulas

∫∫ f(x, y) dx dy
∫ x^n dx = (x^(n+1))/(n+1) + C
∫ x dx = (x^2)/2 + C

Theorems

Fundamental Theorem of Calculus
Properties of Definite Integrals

Suitable Grade Level

Undergraduate Calculus